Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell–cell adhesion through N-cadherin☆
نویسندگان
چکیده
Mesenchymal stem cells (MSCs) retain the ability to self-renew and differentiate into mesenchymal cells. Therefore, human MSCs are suitable candidates for use in regenerative medicine and cell therapies. Upon activation by tissue damage, MSCs contribute to tissue repair through a multitude of processes such as self-renewal, migration, and differentiation. However, loss of self-renewal and multi-lineage differentiation potential occurs at a high rate during cell doubling. Effective MSC therapies require the establishment of new techniques that preserve MSC multipotency after lengthy cell expansions. Here, two novel mechanisms are described for maintenance of stemness in MSCs via scrapie responsive gene 1 (SCRG1)/bone marrow stromal cell antigen-1 (BST1) ligand-receptor combination and cell-cell adhesion through N-cadherin. These two mechanisms findings provide a valuable tool for regenerative medicine and cell therapeutic methods that require the ex vivo expansion of human MSCs while maintaining native stem cell potential.
منابع مشابه
Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells
Human mesenchymal stem cells (hMSCs) remodel or regenerate various tissues through several mechanisms. Here, we identified the hMSC-secreted protein SCRG1 and its receptor BST1 as a positive regulator of self-renewal, migration, and osteogenic differentiation. SCRG1 and BST1 gene expression decreased during osteogenic differentiation of hMSCs. Intriguingly, SCRG1 maintained stem cell marker exp...
متن کاملSCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells
Recently, we identified the scrapie responsive gene 1 (SCRG1) secreted from mesenchymal stem cells (MSCs) and its receptor bone marrow stromal cell antigen 1 (BST1) as positive regulators of stem cell qualities such as self‑renewal, migration abilities, and osteogenic differentiation potential. Here, we examined the effect of the paracrine activity of SCRG1 in macrophages. The mouse macrophage‑...
متن کاملNanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells
Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...
متن کاملRole of cell-cell adhesion complexes in embryonic stem cell biology.
Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadheri...
متن کاملIn vitro histological investigation of interactions between rat decellularized large intestine scaffold and human adipose derived mesenchymal stem cells
The aim of this study was to investigate the interactions between rat intestine decellularized scaffold and human adipose derived mesenchymal stem cells. Rat large intestine was dissected in fragments and decellularized by physicochemical methods. The scaffolds were loaded by human adipose derived mesenchymal stem cells expressing green fluorescent protein. Microscopic sections were prepared fr...
متن کامل